Refine Your Search

Topic

Search Results

Technical Paper

Gas-Liquid and Flow Rate Distributions in Single End Tank Evaporator Plates

1996-02-01
960375
Adiabatic two-phase flow experiments have been carried out in an evaporator plate assembly which has entry and exit header vestibules on one side and a U pattern flow passage with round or cross ribbed protuberance in the channel. Over the practical flow range in common installation orientations, non-uniform distributions were found in both surface wetting on the internal walls of a single channel and the flow rates in a number of parallel channels. The poor performances of the plate surface wetting in single channel and the flow distribution in the multiple channels would severely limit the heat transfer capability of the current designs.
Technical Paper

Evaluation of Different Natural Gas Fueling Strategies During Throttle Transients

1996-10-01
961985
Throttle tip-in and tip-out tests on a 2.0 litre passenger car engine were performed using four different natural gas fuelling systems an air-valve or variable restriction type mixer, a venturi type mixer, central fuel injection, and port fuel injection. The in-cylinder fuel-air equivalence ratio, ϕ, was measured using a fast response flame ionization detector sampling about 7 mm from the spark plug gap. The data reveal characteristics of each fuel system's in-cylinder fuel-air ratio response and torque response.
Technical Paper

Validation Tests for a Fast Response Flame Ionisation Detector for In-Cylinder Sampling Near the Spark Plug

1996-05-01
961201
The air/fuel ratio (AFR) is a key contributor to both the performance and emissions of an automotive engine. Its variation between cylinders - and between engine cycles - is of particular importance, especially during throttle transients. This paper explores the use of a fast flame ionisation detector (FFID) to quantify these rapid changes of in-cylinder composition in the vicinity of the spark gap. While this instrument actually measures fuel concentration, its results can be indicative of the AFR behaviour. Others have used the FFID for this purpose, but the planned test conditions placed special demands on the instrument. These made it prudent to explore the limits of its operating envelope and to validate the experimental technique. For in-cylinder sampling, the instrument must always be insensitive to the large pressure changes over the engine cycle. With the wide range of engine loads of interest here, this constraint becomes even more crucial.
Technical Paper

Effect of CO2 Content on Foaming Behavior of Recyclable High-Melt-Strength PP

2006-04-03
2006-01-0336
This paper presents an experimental study on the foaming behavior of recyclable high-melt-strength (HMS) branched polypropylene (PP) with CO2 as a blowing agent. The foamability of branched HMS PP has been evaluated using a tandem foaming extruder system. The effects of CO2 and nucleating agent contents on the final foam morphology have been thoroughly investigated. The low density (i.e., 12~14 fold), fine-celled (i.e., 107–109 cells/cm3) PP foams were successfully produced using a small amount of talc (i.e., 0.8 wt%) and 5 wt% CO2.
Technical Paper

The Effects of Nano-clay on Extrusion Microcellular Foaming of Nylon

2005-04-11
2005-01-1670
This paper demonstrates the effects of nano-clay on the microcellular foam processing of nylon. First, Nylon 6 nanocomposites with 1 wt% clay were prepared by a twin screw extruder. The nanocomposite structures were characterized by XRD and TEM. Nylon and its nanocomposites were foamed in extrusion using CO2. The cell morphologies of nylon and its nanocomposite foams were investigated. It appeared that the nano-clay not only enhanced cell nucleation, but also suppressed cell deterioration in the microcellular foaming of nylon.
Technical Paper

The Effect of Fiber Surface Treatment on the Performance of Hemp Fiber/Acrylic Composites for Automotive Structural Parts

2006-04-03
2006-01-0005
The use of natural fibers for polymer composite materials has increased tremendously in the last few years. This type of reinforcements offers many advantages such as low density, low cost, high specific strength and low environmental impacts. The performance of the natural fiber composites are affected by the fiber loading, the individual mechanical properties of each component (fiber and matrix), and the fiber and matrix adhesion. Concerning the interfacial interaction, natural fibers present a major drawback because of poor compatibility of fibers with most hydrophobic thermoplastic and thermoset matrix. Hemp fiber/acrylic composites were manufactured with sheet molding technique recently. Although mechanical tests give promising results, they exhibit low tensile strength resulting from a poor fiber/matrix adhesion. The moisture resistance property of the sheet molded composites also needs further improvement.
Technical Paper

Effect of Fungal Modification on Fiber-Matrix Adhesion in Natural Fiber Reinforced Polymer Composites

2006-04-03
2006-01-0006
Natural fiber reinforced polymer composites are beginning to find their way into the commercial automotive market. But, inadequate adhesion between hydrophilic natural fibers and hydrophobic matrix materials affects the performance of the resulting composites. In this study the effect of an environmental friendly fungal treatment on the adhesion characteristics of natural fibers is investigated. Firstly, changes in acid-base characteristics of the modified hemp fibers were studied using Inverse Gas Chromatography (IGC). Afterwards, composites were prepared using Resin Transfer Molding (RTM) process and the effect of modification on performance and durability of the composites was investigated.
Technical Paper

Low-Adhesion Surface Evaluation on an Airfoil in the NRC AIWT

2023-06-15
2023-01-1447
The performance of low-adhesion surfaces in a realistic, in-flight icing environment with supercooled liquid droplets is evaluated using a NACA 0018 airfoil in the National Research Council of Canada Altitude Icing Wind Tunnel. This project was completed in collaboration with McGill University, the University of Toronto and the NRC Aerospace Manufacturing Technologies Centre in March 2022. Each collaborator used significantly different methods to produce low-adhesion surface treatments. The goal of the research program was to demonstrate if the low-adhesion surfaces reduced the energy required to de-ice or anti-ice an airfoil in an in-flight icing environment. Each collaborator had been developing their own low-adhesion surfaces, using bench tests in cold rooms and a spin rig in the wind tunnel to evaluate their performance. The most promising surface treatments were selected for testing on the airfoil.
Technical Paper

Instantaneous In-Cylinder Hydrocarbon Concentration Measurement during the Post-Flame Period in an SI Engine

1999-10-25
1999-01-3577
Crevices in the combustion chamber are the main source of hydrocarbon (HC) emissions from spark ignition (SI) engines fuelled by natural gas (NG). Instantaneous in-cylinder and engine exhaust port HC concentrations were measured simultaneously using a Cambustion HFR400 fast response flame ionization detector (FRFID) concentrated on the post-flame period. The raw data was reconstructed to account for variation in the FFRID sample transit time and time constant due to fluctuating in-cylinder pressure. HC concentration development during the post-flame period is discussed. Comparison is made of the post-flame in-cylinder and exhaust port HC concentrations under different engine operating conditions, which gives a better understanding of the mechanism by which HC emissions form from crevices in SI engines.
Technical Paper

The Effect of Oxygenated Additives on Soot Precursor Formation in a Counterflow Diffusion Flame

1999-10-25
1999-01-3589
A counter–flow propane/air diffusion flame (ϕ= 1.79) is used for a fundamental analysis of the effects of oxygenated additives on soot precursor formation. Experiments are conducted at atmospheric pressure using Gas Chromatography for gas sample analysis. The oxygenated additives dimethyl carbonate (DMC) and ethanol are added to the fuel keeping the total volumetric fuel flow rate constant. Results show 10 vol% DMC significantly reduces acetylene, benzene, and other flame pyrolysis products. Ethanol (10 vol%) shows, instead, more modest reductions. Peak acetylene and benzene levels decrease as the additive dosage increases for both DMC and ethanol. The additive's effect on the adiabatic flame temperature and the fuel stream carbon content does not correlate significantly with acetylene levels. However, there does appear to be a linear relationship between acetylene concentrations and both the additive's oxygen and C–C bond content.
Technical Paper

Emissions from Compression Ignition Engines with Animal-Fat-Derived Biodiesel Fuels

2014-04-01
2014-01-1600
Biodiesel and other renewable fuels are of interest due to their impact on energy supplies as well as their potential for carbon emissions reductions. Waste animal fats from meat processing facilities, which would otherwise be sent to landfill, have been proposed as a feedstock for biodiesel production. Emissions from biodiesel fuels derived from vegetable oils have undergone intense study, but there remains a lack of data describing the emissions implications of using animal fats as a biodiesel feedstock. In this study, emissions of NOx, unburned hydrocarbons and particulate matter from a compression ignition engine were examined. The particulate matter emissions were characterized using gravimetric analysis, elemental carbon analysis and transmission electron microscopy. The emissions from an animal fat derived B20 blend were compared to those from petroleum diesel and a soy derived B20 blend.
Journal Article

PSO-Based Multidisciplinary Design Optimization of Automotive Assemblies

2017-08-01
2017-01-9682
Widely used in automotive industry, lightweight metallic structures are a key contributor to fuel efficiency and reduced emissions of vehicles. Lightweight structures are traditionally designed through employing the material distribution techniques sequentially. This approach often leads to non-optimal designs due to constricting the design space in each step of the design procedure. The current study presents a novel Multidisciplinary Design Optimization (MDO) framework developed to address this issue. Topology, topography, and gauge optimization techniques are employed in the development of design modules and Particle Swarm Optimization (PSO) algorithm is linked to the MDO framework to ensure efficient searching in large design spaces often encountered in automotive applications. The developed framework is then further tailored to the design of an automotive Cross-Car Beam (CCB) assembly.
X